

August 5, 2022

2018 Greenhouse Gas Inventory Memo Oakland County

lyci

Table of Contents

Oakland County 2018 Greenhouse Gas Inventory Memo	1
Greenhouse Gas Inventory	4
GHG Inventory Summary	4
Target Setting Considerations	9
Areas of Inventory Improvement	11
Methodology and Calculator Guidance: How to Use ClearPath in Future GHG Inventories	13
ClearPath	13
Buildings & Facilities Calculations	14
Vehicle Fleet Calculations	20
Solid Waste Facilities Calculations	30
Wastewater Treatment Facilities Calculations	35
Process & Fugitive Emissions Calculations	43

List of Figures

Figure 1 – 2018 GHG Inventory	5
Figure 2 – ClearPath Tabs Used in Oakland County Inventory	. 13
Figure 3 – Sample of Oakland County Parks and Recreation Department Electricity Data File	. 15
Figure 4 – 2018 Electricity Emissions Factor	. 15
Figure 5 – ClearPath Electricity Calculator Data Inputs Screen	. 16
Figure 6 – Sample Natural Gas Data Bill	. 17
Figure 7 – ClearPath Natural Gas Calculator Data Inputs Screen	. 18
Figure 8 – ClearPath Generator Fuel Oil Calculator Data Inputs Screen	. 19
Figure 9 – Municipal Fleet Fuel Data	. 21
Figure 10 – Vehicle Class Categories	. 21
Figure 11 – Airport Vehicle Fuel Log, Gasoline	. 22
Figure 12 – Airport On-road Vehicle Fleet	. 22
Figure 13 - ClearPath On-road Vehicle Fleet Calculator Data Inputs Screen - Gasoline	. 23
Figure 14 - ClearPath On-road Vehicle Fleet Calculator Data Inputs Screen - Diesel	. 24
Figure 15 – Off-road Equipment Fuel Type Comparison	. 25
Figure 16 – Airport Vehicle Fuel Log, Diesel	. 26
Figure 17 – Airport Off-road Vehicle Fleet	. 27
Figure 18 - ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen - Diesel	. 28
Figure 19 – ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen – Biodiesel	. 28
Figure 20 - ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen - Gasoline	. 29
Figure 21 – Sample of 2020 Park Waste Generation Analysis	. 30
Figure 22 – ClearPath Waste Characterization Factor Set Input	. 32
Figure 23 - ClearPath Solid Waste Calculator Data Inputs Screen - Campus Waste to Landfill	. 33
Figure 24 - ClearPath Solid Waste Calculator Data Inputs Screen - Park Waste to Landfill	. 34
Figure 25 - ClearPath Solid Waste Calculator Data Inputs Screen - Park Waste to Compost	. 34
Figure 26 – ClearPath Wastewater Treatment Calculators Uses in 2018 GHG Inventory	. 37
Figure 27 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional WWTP	
Process Emissions	. 38

Figure 28 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional Aerobic WWTP Effluent
Figure 29 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional Anaerobic WWTP Effluent
Figure 30 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Digester Gas Combustion
Figure 31 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Septic Systems

List of Tables

Table 1 – IPCC Fifth Assessment Report GWP Values	4
Table 2 – 2018 Municipal Activity Data and Emissions	5
Table 3 – 2050 GHG Reduction Barrier Analysis	10
Table 4 - ClearPath Calculator Summary and Data Sources - Buildings & Facilities	14
Table 5 – ClearPath Calculator Summary and Data Sources – Vehicle Fleet	20
Table 6 - ClearPath Calculator Summary and Data Sources - Solid Waste Facilities	30
Table 7 – Michigan State-wide Aggregate Composition (mean % by weight)	31
Table 8 – ClearPath Calculator Summary and Data Sources –Wastewater Treatment Facilities	35
Table 9 – Facilities with Process/Effluent Emissions Included in the GHG Inventory	35
Table 10 – Conventional Wastewater Treatment Facility Information	36
Table 11 – Septic System Facility Information	36
Table 12 – ClearPath Calculators and Wastewater Facility Mapping	37
Table 13 - ClearPath Calculator Summary and Data Sources - Process & Fugitive Emissions	43

Greenhouse Gas Inventory

The County conducted a greenhouse gas (GHG) inventory to understand the sources of County operational GHG emissions and to identify priority actions that can advance its net zero carbon goal. The GHG inventory results presented in this memo highlight the sectors in which the County will need to focus GHG reduction efforts to achieve the net zero target. The inventory accounts for emissions across all sites, facilities, and operations to represent the full spectrum of County operational emissions.

This government operations GHG inventory follows the guidance outlined in the Local Government Operations Protocol (LGOP), developed by ICLEI – Local Governments for Sustainability, the California Air Resources Board, and the California Climate Action Registry. As an ICLEI member, the County selected ICLEI's ClearPath tool as the primary GHG inventory tracking tool. ClearPath is an online application for the calculation, tracking, and management of GHG emissions inventories at the government operations and community scales. ClearPath allows users to create government operations inventories that are in line with the LGOP. The tool accounts for the GHGs recognized under the Kyoto Protocol, including carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). These GHGs have varying levels of climate impact and are represented as carbon dioxide equivalents (CO₂e) in the GHG inventory to allow for comparison. Each GHG has a global warming potential (GWP) that represents its heat-trapping ability relative to that of CO₂. Quantities of different GHGs are converted to CO₂e using their 100-year GWP values from the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report.¹

Table 1 – IPCC Fifth Assessment Report GWP Values

GHG*	GWP
CO2	1
CH₄	28
N2O	265

* Due Oakland County's inventory boundary and reporting protocol requirements, only CO₂, CH₄, and N₂O emissions were relevant to the County's operations and are included in this table.

The LGOP recommends GHG inventories be developed based on calendar year data. The County's base year inventory represents calendar year 2018 as it is the most recent year that reflects normal, pre-COVID-19 operating conditions. The inventory is organized into five sectors: Buildings and Facilities, Vehicle Fleet, Solid Waste Facilities, Wastewater Facilities, and Fugitive Emissions. Generally, the inventory includes emissions from sources over which the County has operational control, except for solid waste disposal. The County has operational control in instances where there is full authority to introduce and implement operating policies at the operation. If services are contracted to other organizations who maintain operational control, any emissions resulting from the service are considered "outside" of the County's control and can be optionally reported. Even though solid waste disposal operations would be considered an optional emissions source, these emissions have been included in the 2018 inventory to better represent total GHG emissions due to County operations.

GHG Inventory Summary

In calendar year 2018, government operations generated 56,411 metric tonnes (MT) CO₂e. Approximately 75% of these emissions are from building and facility electricity and natural gas use. The remaining emissions are primarily from on-road fleet vehicles followed by wastewater treatment processes, solid waste disposal, and off-road vehicles and equipment. The following sections detail municipal emissions in each of the five sectors (see Figure 1 and Table 2).

¹ <u>https://www.ipcc.ch/assessment-report/ar5/</u>

Figure 1 – 2018 GHG Inventory

Table 2 – 2018 Municipal Activity Data and Emissions

ClearPath Category	CY2018	Activity Data	Unit	ClearPath Emissions (MTCO2e)	% Total
5	Natural Gas	2,460,769	therms	13,088	23%
and Facilities	Generator Fuel Oil	1,587	gallons	16	<1%
	Electricity	49,829,981	kWh	29,857	53%
	On-road Vehicles - Diesel	39,163	gallons	400	<1%
	On-road Vehicles - Gasoline	891,677	gallons	7,864	14%
Vehicle Fleet	Off-road Vehicles - Diesel	31,144	gallons	321	<1%
	Off-road Vehicles - Biodiesel	451	gallons	4	<1%
	Off-road Vehicles - Gasoline	28,292	gallons	250	<1%
	Campus Solid Waste	5,014	short tons	1,627	3%
Solid Waste Facilities	Park Waste - Landfill	1,129	short tons	366	<1%
	Park Waste - Compost	49	short tons	3	<1%
	Conventional WWTP Process Emissions	221,112	people	513	<1%

	Conventional Aerobic WWTP Effluent Discharge	96,112	people	589	1%
Wastewater Treatment Facilities	Conventional Anaerobic WWTP Effluent Discharge	125,000	people	910	2%
	Conventional Anaerobic WWTP Digester Gas Combustion	125,000	people	8	<1%
	Septic Systems	1,379	people	168	<1%
Process and Fugitive Emissions	Fugitive Emissions from Natural Gas Distribution	2,460,769	therms	427	<1%
TOTAL	56,411	MTCO2e			

Buildings and Facilities

Buildings and facilities generate GHG emissions from on-site energy use. Electricity consumption is the single largest contributor to County GHG emissions, generating roughly 53% of total local government operations emissions. The County uses a third-party choice purchaser, Executive Energy, to purchase electricity, but does not currently participate in any green power purchasing, which could serve to reduce the County's electricity emissions in the future. Natural gas consumption generates approximately 23% of total GHG emissions, while fuel oil used in generators contributes less than one percent.

The Central Steam Plant uses natural gas to generate steam. The steam is distributed to the main campus buildings to provide space heating/cooling and water heating. Though the Central Steam Plant occasionally uses fuel oil, none was consumed in calendar year 2018. Additionally, three campus buildings do not use central steam and are served directly by utility-provided natural gas. The County also operates three airports and multiple wastewater treatment facilities, septic systems, and retention treatment basins that use natural gas and electricity. Streetlight electricity consumption was excluded from this inventory as direct electricity consumption data was not available and GHG emissions are likely negligible based on the small number of streetlights within County control.

The County operates 35 emergency generators that use #2 dyed ultra-low sulfur diesel. The County's wastewater treatment facilities also use separate generators, but the fuel consumption information for these systems is not currently tracked and has not been included in the 2018 inventory.

Fugitive Emissions

Fugitive emissions include the intentional or unintentional releases of GHGs commonly arising from the production, processing, transmission, storage, and use of fuels and other substances. This includes refrigerant leakage from air conditioners or natural gas leakage from distribution pipelines.

Municipal operations fugitive emissions include those from natural gas distribution and represent less than 1% of the County's total GHG emissions. Calculating refrigerant leakage emissions depends on knowing the timing and quantity of refrigerant recharge. The County hires contractors to re-charge refrigerants in chiller systems but the amount of added refrigerant is not tracked. The County is currently working to create a refrigerant tracking system for large chillers, which could help inform future GHG inventories.

Vehicle Fleet

The County's vehicle fleet includes on-road and off-road vehicles and equipment. The on-road vehicle fleet generates nearly 15% of total GHG emissions while off-road vehicles and equipment contribute approximately 1%.

On-road and off-road vehicles and equipment both use gasoline and diesel fuels while some off-road equipment also uses biodiesel. While on-road vehicle fleet fuel use could not be disaggregated by County department, off-road emissions included in the inventory were from Parks and Recreation and Airport Administration equipment, such as lawnmowers all-terrain vehicles, snowblowers, plows, runway brooms, fire trucks, and tractors. The Water Resources Commissioner's (WRC) Office also uses gasoline, diesel, and liquified petroleum gas (LPG) powered off-road vehicles and equipment, such as forklifts, pumps, rough terrain vehicles (RTV), telehandlers, snow blowers, and pressure washers. However, WRC does not specifically track off-road fuel consumption, so emissions from their off-road vehicles and equipment were excluded from the 2018 inventory.

The Sheriff's Office helicopters are the only source of aviation fuel consumption in County municipal operations. During inventory development, County staff considered this fuel use to be negligible and this activity was excluded from the inventory.

Wastewater Treatment Facilities

Wastewater generates GHG emissions during its treatment and discharge. The County operates multiple wastewater treatment facilities, septic systems, and retention treatment basins. These systems serve residents, businesses, parks, and golf courses. Wastewater treatment and discharge from these systems generates nearly 4% of total County emissions.

This category represents process emissions that occur from wastewater treatment and discharge. Any electricity and natural gas use from County-operated wastewater facilities is reflected in the Buildings and Facilities sector. Wastewater produced by municipal operations, such as in bathrooms, is primarily sent to wastewater facilities outside of the County's operational control (e.g., Clinton River Water Resource Recovery Facility). Therefore, these emissions are considered optional sources for reporting purposes and are not included in the 2018 inventory.

Solid Waste Facilities

Solid waste disposal generates GHG emissions based on its treatment process, such as through the decomposition of organic matter. This typically occurs in landfills where fugitive methane emissions are released. Composting organic waste can drastically reduce these emissions, while recycling waste typically produces no GHG emissions that are reflected in the GHG inventory. Using estimated waste quantities, landfilled waste from the campus and parks generates almost 4% of total government operations emissions. Composting green waste from County Parks generates less than 1%. Around 13% of total waste is estimated to be diverted to recycling or compost.

The County does not own or operate any landfills and therefore does not report any direct landfill fugitive GHG emissions. The County does generate solid waste though and contracts waste disposal services. Even though contracted solid waste disposal operations are considered optional emissions sources, they are included in the 2018 inventory to better represent total GHG emissions from municipal operations.

Empirical data on solid waste disposal in 2018 was not available. However, a campus operations diversion rate analysis was conducted as part of the sustainability planning process with 2020 data that showed estimated campus and park waste quantities and destinations. These estimates were developed based on information gathered from department interviews, dumpster sizes, and pick-up schedules. The 2020 estimated waste quantities were used as a proxy for calendar year 2018. Notably, these waste

values reflect pandemic-related operational impacts while the rest of the 2018 GHG inventory data does not. Additionally, the specific receiving landfills and composting sites for the campus and park waste are unknown, so default assumptions were made to support the GHG emissions calculations.

To improve future solid waste tracking and emissions reporting, the County should require waste quantity and disposal destination reporting from its waste contractors (see the strategy *H5: Review and Renegotiate Waste Hauling Contracts* in the Sustainability Plan for more detail).

Target Setting Considerations

The County set a target to achieve net zero emissions for County government operations by 2050 with an interim target of 50% emissions reduction by 2035. During the Sustainability Plan development process, the County selected 2018 as the inventory baseline year. As there are different pathways for meeting a net zero target, the definition of net zero in the context of Oakland County's operations and Sustainability Plan is as follows:

Net Zero: The net GHG emissions associated with County government operations are zero. This is achieved through ambitious local climate action that reduces GHG emissions to the extent feasible combined with implementation of local and regional carbon dioxide removal (CDR) opportunities to remove any remaining emissions estimated to occur in the target years. CDR opportunities can include natural strategies, such as forest restoration and agricultural soil management, or high-tech strategies, such as direct air capture.

In order to reach net zero, sector-specific strategies and targets can be identified to ensure sector reductions are progressing in line with the net zero goal. However, there may be technological or political barriers to meeting these sector targets or reducing remaining emissions. The following sections discuss draft sector-specific targets, potential barriers to achieving emissions reductions, and sources of remaining or residual emissions.

Sector Targets

The following section describes draft sector-level GHG reduction targets.

Transportation

Draft Targets:

- 1. Transition to 100% ZEV purchases as soon as possible for passenger/light-duty vehicles and no later than 2035 for all other vehicle types
- 2. 100% ZEV fleet by 2050

Fleet emissions can be reduced by converting fleet vehicles to zero-emission vehicles (ZEVs). ZEVs include battery electric or fuel cell electric vehicles. If the County aspires to transition 100% of the fleet to ZEVs by 2050, fleet vehicles should begin to be replaced with ZEVs at the end of the vehicle's lifetime starting no later 2030 (this year can vary depending on vehicle lifetime).

Maximizing GHG emission reductions in this sector is likely also dependent on decarbonizing the electric grid. To fully reduce transportation emissions, the fleet should be 100% ZEV and the grid should be powered by 100% zero-carbon energy.

Building and Facility Electrification

Draft Targets:

- 1. Begin transition to 100% all-electric (or other decarbonized option) replacements for fossil fuel equipment no later than 2035
- 2. Fully decommission Central Heating Plant by 2050
- 3. 100% building and facility electrification by 2050

Building and facility emissions can be reduced through electrification which is transitioning from fossil fuel equipment to electric options. If the County is to transition 100% of buildings and facilities to all-electric by

2050, fossil fuel equipment should begin to be replaced with only electric options at the end of the equipment's lifetime starting around 2035 (this year can vary depending on the equipment lifetime).

Maximizing GHG emission reductions in this sector is also dependent on decarbonizing the electric grid. To fully reduce emissions in this sector, electrified buildings and facilities should be powered by a 100% zero-carbon electric grid.

Electricity

Draft Targets:

- 1. Purchase 100% carbon-free electricity through County utility provider by 2035
- 2. Develop on-site solar resources to generate 25% of electricity demand by 2035

GHG emissions reductions in the building and transportation sectors rely on obtaining electricity from a 100% zero-carbon grid. This can be achieved through a combination of on-site or off-site renewable energy installations, green power purchasing agreements, and lobbying for aggressive grid decarbonization targets at the state level.

Remaining Emissions and Reduction Barriers

Achieving the net zero target means directly reducing GHG emissions to the maximum feasible extent by focusing on the largest emissions sources through policies, incentives, and partnerships. However, there are current technological, regulatory, and financial barriers that will inhibit the County from directly reducing all emissions to zero by 2050. These barriers, as well as potential solutions the County can pursue, are presented in Table 3.

Table 3 –	2050	GHG	Reduction	Barrier	Analy	ysis
-----------	------	-----	-----------	---------	-------	------

Barrier	Barrier Description	Potential Solutions
Grid decarbonization	Michigan's Renewable Energy Standard required Michigan electric providers to achieve a retail supply portfolio of 15% renewable energy in 2021. Additionally, it established a 2025 goal of meeting not less than 35% of the state's electric needs through a combination of energy waste reduction and renewable energy by 2025. ² DTE Energy, which is the County's electric utility distributor, has set a target of 25% renewable electricity generation by 2030. ³ DTE has also set a net zero goal by 2050, but they have not set a formal renewable energy target by 2030. The Biden administration set a target of 100% carbon- free electricity by 2035, but this goal could face substantial political roadblocks and is not quaranteed to occur	The County will need to increase its renewable energy procurement through a combination of on-site or off-site renewable energy installations, green power purchasing agreements, and lobbying for aggressive grid decarbonization targets at the state level.
Building natural gas use	Unlike other emissions sources, there are currently no industry commitments to decarbonize natural gas use in existing	Continue to evaluate the County's utility provider options considering a range of factors, including their

² https://www.michigan.gov/-/media/Project/Websites/mpsc/regulatory/reports/pa295-

ren/2020_Renewable_Energy_Standard_Report_with_Appendices.pdf?rev=abf6a8f90b934d178f6e08e73bf970ca

³ https://www.detroitnews.com/story/news/michigan/2018/05/18/michigan-dte-consumers-renewable-goal/35058065/

	buildings from space and water heating or cooking. Technology already exists to decarbonize many natural gas applications that are used in County buildings, so the barrier to target achievement is potential pushback from the County facility management team who might be unfamiliar with electric equipment options, for example. There could also be cost barriers associated with electrifying buildings if panel upgrades or other upfront expenses are required.	commitment to supporting decarbonization in the building sector with financial incentives. Establish a long-term plan for County building decarbonization that includes a phasing schedule that can inform the capital budgeting process to ensure sufficient funds are allocated to complete the work.
Zero emission vehicle (ZEV) and zero- emission off- road equipment purchasing	ZEV options may not be available for all vehicle and equipment types.	Conduct a fleet transition study to understand the timing and technologies available to achieve a 100% ZEV fleet and 100% zero- emissions off-road equipment target, including phasing schedules to inform capital budget planning.
Wastewater treatment	Wastewater treatment processes generate 4% of total emissions in 2018. Further, fully reducing all process-related GHG emissions from wastewater treatment is technologically challenging and potentially cost prohibitive.	Continue to research high-efficiency wastewater treatment processes and utilize state-wide or federal programs aimed at helping local wastewater treatment facilities in their decarbonization efforts. Plan for a 2050 scenario in which wastewater treatment emissions remain and must be compensated with CDR opportunities.
Solid Waste	Actual solid waste disposal and diversion data is not available. Estimated campus and park waste data shows that 13% of total waste is diverted to recycling or compost. In order to reduce waste emissions, all organic solid waste types must be diverted to recycling or to be composted. This primarily includes paper/cardboard, food, green/yard waste, and lumber scraps.	More accurate waste data is needed to better establish reduction targets. However, 100% diversion of all recyclable and compostable content could act as an aspirational target (the actual diversion % will be lower than 100% as not all materials can be diverted). Plan for a 2050 scenario in which some amount of solid waste emissions remain and must be compensated with CDR opportunities.

Areas of Inventory Improvement

If desired, the County can improve or expand on its optional GHG emissions reporting in future inventories, which could include the following:

- 1. Improving solid waste emissions calculations
 - Collect accurate solid waste data on quantity of waste landfilled, recycled, and composted

- 2. Calculating emissions from wastewater produced by County operations
 - Collect information on the treatment facilities and staff population served by each facility
- 3. Calculate emissions from employee commute and business travel
 - Collect information on miles travels, gallons of fuel consumed, and vehicle types

Note that each of these options is likely to represent a very minor additional contribution of GHG emissions to the County's inventory, and the data collection efforts necessary to achieve accurate results may not justify the extra effort. Additionally, other minor emissions sources that were excluded from the 2018 GHG inventory could be calculated and included in future inventories, if desired. These sources include:

- 1. Street light electricity consumption
- 2. Refrigerant leakage
- 3. WRC off-road equipment fuel consumption
- 4. Sherriff helicopter fuel consumption

Methodology and Calculator Guidance: How to Use ClearPath in Future GHG Inventories

This methodology and guidance section documents use of the ClearPath GHG inventory calculator in developing the County's 2018 inventory. The information provided below, combined with the County's GHG inventory activity data files, should provide sufficient guidance for a future user to develop a subsequent GHG inventory that is consistent with the approach taken in the 2018 version.

ClearPath

The ClearPath GHG calculators applicable to Oakland County GHG emissions are located under the following ClearPath tabs (see green text-labeled tabs in Figure 1):

- 1. Buildings & Facilities
- 2. Vehicle Fleet
- 3. Solid Waste Facilities
- 4. Water & Wastewater Treatment Facilities
- 5. Process & Fugitive Emissions

Figure 2 – ClearPath Tabs Used in Oakland County Inventory

Oakland County Owned Facilities Edit Parameters								
Buildings & Facilities	Buildings & Facilities Street Lights & Traffic Signals Vehicle Fleet Transit Fleet Employee Commute Electric Power Production Solid Waste Facilities Water & Wastewater Treatment Facilities Process & Fugitive Emissions							

In these calculators, any "optional" inputs do not need to be completed. If the calculator used includes the question: "Is the facility owned/operated by your local government?", the answer should be marked as "Yes" for all calculators except for solid waste (landfill and compost).

Buildings & Facilities Calculations

Table 4 identifies the ClearPath calculators used on the Buildings & Facilities tab, including the activity data analyzed, the calculator name, the inputs needed, and the source of inputs collected for the 2018 GHG inventory. Details on calculating each activity type are provided in subsequent sections.

Activity	ClearPath Calculator Name	ClearPath Inputs	Source of Inputs
Electricity	"Emissions from Grid Electricity"	• Electricity Use (kWh)	 Municipal Buildings: Joseph Murphy <murphyj@oakgov.com></murphyj@oakgov.com> Wastewater Treatment Facilities: Gary Nigro <nigrog@oakgov.com></nigrog@oakgov.com> Airport: Michelle Stover <stoverm@oakgov.com></stoverm@oakgov.com> Parks and Recreation: Mike Donnellon <donnellonm@oakgov.com></donnellonm@oakgov.com>
Natural Gas	"Emissions from Stationary Fuel Combustion"	 Fuel Type (Natural Gas) Fuel Use (therms) 	 Central Heating Plant and Separate Municipal Accounts: Joseph Murphy <murphyj@oakgov.com></murphyj@oakgov.com> Wastewater Treatment Facilities: Gary Nigro <nigrog@oakgov.com></nigrog@oakgov.com> Airports: Michelle Stover <stoverm@oakgov.com></stoverm@oakgov.com>
Generator Fuel Oil	"Emissions from Stationary Fuel Combustion"	 Fuel Type (Fuel Oil) Fuel Use (gallons) 	 Mike Chiasson <chiassonm@oakgov.com></chiassonm@oakgov.com>

Table 4 – ClearPath Calculator Summary and Data Sources – Buildings & Facilities

Electricity

Data Sources

Electricity data was provided separately for four different sources:

- 1. Municipal buildings
- 2. Wastewater treatment plants
- 3. Airports
- 4. Parks and Recreation operations

Total electricity consumption data for municipal buildings, wastewater treatment plants, and airports was provided as a separate kWh value for each source. Parks and Recreation electricity usage was represented by account and not summed. However, because kWh consumption was represented multiple times per account (see Figure 3), it was necessary to select one kWh reading per account in order to sum total Parks and Recreation kWh consumption rather than summing the entire "Usage" column.

	ect Energy, _I	Electricity : County of Oa	kland, for Oakland County Parks and Recreatior	n - 1/1/201	8 - 12/31/2018					
Invoice Dat	e Invoice #	Customer Name	Billing Ac Utility Account Service Location	Meter Read Sta	Meter Read End Description	Billing Unit	u u	Jsage Units	Am	ount
12/18/20	18 183520036887451	Dakland County Parks and Recreation	1072270		Payment	\$ '0	.000'	0.00	\$	(772.32)
12/18/20	18 183520036887451	L Oakland County Parks and Recreation	1072270 91000005187(12451 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 Fixed Price	\$ 1	0.064	9600.00 kWh	\$	614.30
12/18/20	18 183520036887451	L Oakland County Parks and Recreation	1072270 91000005187(12451 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 MISO SECA Charge	\$ '0	.000'	9600.00 kWh	\$	-
12/18/20	18 183520036887451	L Oakland County Parks and Recreation	1072270 91000005187(12451 ANDERSONVILLE SPRINGFIELD MI 48350		State/Provincial Tax		0%	0.00	\$	-
12/18/20	18 183520036887451	L Oakland County Parks and Recreation	1072270 91000005187(12451 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 Transmission Adjustment	\$ 1	0.000	9600.00 kWh	\$	3.55
12/18/20	18 183520036887450	Oakland County Parks and Recreation	1072269 91000005186; 12400 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 Transmission Adjustment	\$ 1	0.000	3600.00 kWh	\$	1.33
12/18/20	18 183520036887450	Oakland County Parks and Recreation	1072269 91000005186 12400 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 MISO SECA Charge	\$ '0	.000'	3600.00 kWh	\$	-
12/18/20	18 183520036887450	Oakland County Parks and Recreation	1072269 91000005186; 12400 ANDERSONVILLE SPRINGFIELD MI 48350		Payment	\$ '0	.000'	0.00	\$	(391.31)
12/18/20	18 183520036887450	Oakland County Parks and Recreation	1072269 91000005186 12400 ANDERSONVILLE SPRINGFIELD MI 48350	11/13/2018	12/13/2018 Fixed Price	\$ 1	0.064	3600.00 kWh	\$	230.36
12/18/20	18 183520036887450	Oakland County Parks and Recreation	1072269 91000005186; 12400 ANDERSONVILLE SPRINGFIELD MI 48350		State/Provincial Tax		0%	0.00	\$	-
12/10/20	18 183440036787410	Oakland County Parks and Recreation	1072279 91001278147: 2800 WATKINS LAKE WATERFORD MI 48328	11/2/2018	12/2/2018 Fixed Price	\$ 1	0.064	7520.00 kWh	\$	481.20
12/10/20	18 183440036787410	Oakland County Parks and Recreation	1072279 91001278147: 2800 WATKINS LAKE WATERFORD MI 48328		Payment	\$ '0	.000'	0.00	\$	(514.88)
12/10/20	18 183440036787410	Oakland County Parks and Recreation	1072279 91001278147: 2800 WATKINS LAKE WATERFORD MI 48328		State/Provincial Tax		0%	0.00	\$	-
12/10/20	18 183440036787410) Oakland County Parks and Recreation	1072279 91001278147, 2800 WATKINS LAKE WATERFORD MI 48328	11/2/2018	12/2/2018 MISO SECA Charge	\$ '0	.000'	7520.00 kWh	\$	
12/10/20	18 183440036787410	Oakland County Parks and Recreation	1072279 91001278147: 2800 WATKINS LAKE WATERFORD MI 48328	11/2/2018	12/2/2018 Transmission Adjustment	\$ 1	0.000	7520.00 kWh	\$	2.78
12/10/20	18 183440036787409	Oakland County Parks and Recreation	1072272		Payment	\$ '0	.000'	0.00	\$	(409.33)
12/10/20	18 183440036787409	Oakland County Parks and Recreation	1072272 91004088301 2804 WATKINS LAKE RD WATERFORD MI 48328	11/3/2018	12/4/2018 Transmission Adjustment	\$ 1	0.000	7240.00 kWh	\$	2.68
12/10/20	18 183440036787409	Oakland County Parks and Recreation	1072272 91004088301 2804 WATKINS LAKE RD WATERFORD MI 48328	11/3/2018	12/4/2018 Fixed Price	\$ 1	0.064	7240.00 kWh	\$	463.29
12/10/20	18 183440036787409	Oakland County Parks and Recreation	1072272 91004088301 2804 WATKINS LAKE RD WATERFORD MI 48328		State/Provincial Tax		0%	0.00	\$	-
12/10/20	18 183440036787409	Oakland County Parks and Recreation	1072272 91004088301 2804 WATKINS LAKE RD WATERFORD MI 48328	11/3/2018	12/4/2018 MISO SECA Charge	\$ '0	.000'	7240.00 kWh	\$	-
12/10/20	18 183440036787408	Oakland County Parks and Recreation	1072268		Payment	\$ '0	.000'	0.00	\$	(1,266.60)
12/10/20	18 183440036787409	Coakland County Parks and Recreation	1072268, 91000005165(1480 W ROMEO RD, ADDISON MI 48367	11/2/2018	12/3/2018 Fixed Price	\$ 1	064	26400.00 kWh	S	1 689 34

Figure 3 – Sample of Oakland County Parks and Recreation Department Electricity Data File

Street lighting electricity consumption is also billed and accounted for separately, but the actual kWh consumption is not available. Because of this lack of data, and the assumption that street light emissions are most likely legible (initial estimates from available data show they represent <0.001% of total electricity emissions), street light operation has been excluded from the 2018 inventory. For purposes of the 2018 GHG inventory, all kWh usage labeled as 'Fixed Price' in the "Description" column were summed to derive the total kWh activity data.

Emissions Factor

In ClearPath, the electricity emissions factor for the region can be entered under "Factor Sets" \rightarrow "Grid Electricity." Because generation-specific emissions factors could not be obtained from the County's third-party choice purchaser Executive Energy, the 2018 EPA eGRID emissions factor for the RFCM Subregion was used (see Figure 4).⁴

Figure	4 –	2018	Electricity	Emissions	Factor
	-				

* Name						
eGRID 2018 - RFCM Subregion						
Year	2018 🗸					
CO2 lbs/MWh	1312.56					
CO2 kg/MWh						
CH4 lbs/GWh	129					
CH4 kg/GWh						
N2O lbs/GWh	18					
N2O kg/GWh						

⁴ <u>https://www.epa.gov/egrid/download-data</u>

Market- vs Location-based

Agencies can assess emissions from electricity consumption using two methods: a location-based method or a market-based method. A location-based method is based on an average emission factor for the region's electrical grid, and location-based emissions factors are generally obtained from EPA eGRID. The market-based method allocates emissions from energy generators to consumers based on "contractual instruments" such as utility-specific emission factors, energy attribute certificates, or other contracts.

ClearPath recommends using an electricity emissions factor specific to the utility (market-based). If that's not available, ClearPath recommends using the regional factor from EPA eGRID (location-based). Because generation-specific emissions factors could not be obtained from the County's third-party choice purchaser Executive Energy, the location-based method was used instead. However, if generation- or utility-specific emissions factors are available in the future, these factors should be used to calculate market-based electricity emissions in ClearPath. Using this method will better reflect the emissions impact of the County's future green power purchasing. Both methods should be tracked annually, if possible.

ClearPath Calculator

Total kWh consumption from all facilities should be summed and entered in the ClearPath calculator "Emissions from Grid Electricity." Under Factors Sets input, the correct grid electricity emissions factor should be selected for that year (see Figure 5).

Figure 5	5 – Clear	Path Elect	ricity Calcu	lator Data	Inputs	Screen
----------	-----------	------------	--------------	------------	--------	--------

* Name	
Electricity	
Factor Sets	Tags
Grid Electricity	
	Information Only

	Value	Units
Were emissions calculated externally from ClearPath? 😨	No	
Electricity Used	49841981	kWh 🗸
Daily Occupancy (optional) 😨		People V
Daily Operating Hours (optional) 💿		Hours per Day 🗸
Building Square Footage (optional) ②		Square Feet 🗸
Is this facility owned/operated by your local government? 😨	Yes 🗸	

Natural Gas

Data Sources

Natural gas data was provided separately for four different sources:

- 1. Central Heating Plant
- 2. Three accounts that use utility natural gas from Consumer Energy
- 3. Airports
- 4. Wastewater treatment facilities

Total natural gas consumption data for municipal buildings, wastewater treatment plants, and airports was provided as a separate therm value for each source. Natural gas data for the three separate utility accounts was provided as scanned bills (see Figure 6). These bills were transcribed to sum the total therms consumed.

Figure 6 – Sample Natural Gas Data Bill

030 1200 N TELEGRAPH PONTIAC, MI 48341

METER # 56021797 ACCT# 1000 4080 1795

FY2018	REAL	INGS	MCF	CUMULATIVE	CONSUMERS	CONSTELL	MONTHLY	YEAR-TO-DATE
DATES	FROM	ТО	USED	CONSUMPTION	CHARGES	CHARGES	TOTAL	TOTAL
09/29-10/31	7551	17021	956.7	956.7	\$1,001.10	\$2,783.15	\$3,784.25	\$3,784.25
11/01-11/29	17021	27918	1100.9	2057.6	1,143.99	3,928.66	\$5,072.65	8,856.90
11/30-12/28	27918	41560	1378.2	3435.9	1,487.31	5,253.54	\$6,740.85	15,597.75
12/29-01/31	41560	58320	1693.2	5129.1	2,000.95	9,546.07	\$11,547.02	27,144.77
02/01-02/28	58320	70545	1235.1	6364.2	1,489.66	4,241.90	\$5,731.56	32,876.33
03/01-03/28	70545	82314	1189.0	7553.2	1,438.21	4,457.22	\$5,895.43	38,771.76
03/29-04/30	82314	95145	1296.3	8849.4	1,557.97	6,076.25	\$7,634.22	46,405.98
05/01-05/31	95145	4397	934.7	9784.1	1,154.40	3,978.76	\$5,133.16	51,539.14
06/01-06/29	4397	12598	828.5	10612.7	989.85	3,675.63	\$4,665.48	56,204.62
06/30-07/30	12598	20194	767.4	11380.1	924.62	2,431.22	\$3,355.84	59,560.46
07/31-08/31adi	20194	28053	794.0	12174.1	953.01	3,760.82	\$4,713.83	64,274.29
09/01-09/27	28053	34635	664.9	12839.0	807.38	1,702.96	\$2,510.34	66,784.63
					14,948.45	51,836.18	\$66,784.63	

It should be noted that while the County Central Heating Plant did not use any oil in 2018, if oil is consumed during future inventory years, oil consumption should be reported under a new calculator titled "Emissions from Stationary Fuel Combustion".

Emissions Factor

ClearPath uses a default emissions factor for natural gas that cannot be edited.

ClearPath Calculator

Total therm consumption should be summed and entered in the ClearPath calculator "Emissions from Stationary Fuel Combustion" (see Figure 7).

Figure 7 – ClearPath Natural Gas Calculator Data Inputs Screen

* Name		
Natural Gas		
	Tags	

Information Only

Inputs

	Value	Units
Were emissions calculated externally from ClearPath? ③	No	
Fuel Type 💿	Natural Gas 🗸	
Fuel Use 😨	2460769	Therms 🗸
Daily Occupancy (optional) 💿		People V
Daily Operating Hours (optional) ③		Hours V
Building Square Footage (optional) 😨		Square Feet 🗸
Is this facility owned/operated by your local government? $\textcircled{2}$	Yes 🗸	

Generator Fuel Oil

Data Source

The total gallons of generator fuel oil purchased was summed in an email from Michael Chiasson, Chief of Facilities Maintenance and Operations. He noted that all County generators use #2 Dyed Ultra Low Sulfur Diesel. In ClearPath, this fuel is entered as Distillate Fuel Oil #2.

Emissions Factor

ClearPath uses a default emissions factor for fuel oil that cannot be edited.

ClearPath Calculator

Total gallon consumption should be summed and entered in the ClearPath calculator "Emissions from Stationary Fuel Combustion" (see Figure 8).

Figure 8 – ClearPath Generator Fuel Oil Calculator Data Inputs Screen

* Name

Generator Fuel Oil

Tags			

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? (\circ)	No	
Fuel Type 💿	Distillate Fuel Oil No. 2	
Fuel Use 😨	1587	Gallons 🗸
Daily Occupancy (optional) ③		People V
Daily Operating Hours (optional) 😨		Hours V
Building Square Footage (optional) 💿		Square Feet 🗸
Is this facility owned/operated by your local government? ③	Yes 🗸	

Vehicle Fleet Calculations

Table 5 identifies the ClearPath calculators used on the Vehicle Fleet tab, including the activity data analyzed, the calculator name, the inputs needed, and the source of inputs collected for the 2018 GHG inventory. Details on calculating each activity type are provided in subsequent sections.

Activity	ClearPath Calculator Name	Inputs	Source
On-road Gasoline and Diesel	"Fleet Vehicle Emissions"	 Gallons of fuel consumed for each fuel VMT per fuel % VMT by vehicle type and fuel 	 Municipal Fleet: Jon Tomkins <tomkinsj@oakgov.com></tomkinsj@oakgov.com> Airports: Michelle Stover <stoverm@oakgov.com></stoverm@oakgov.com>
Off-Road Gasoline, Diesel and Biodiesel	"Emissions from Off Road Vehicles"	 Gallons of fuel consumed for each fuel 	 Airports: Michelle Stover <stoverm@oakgov.com></stoverm@oakgov.com> Parks and Recreation: Mike Donnellon <donnellonm@oakgov.com></donnellonm@oakgov.com>

Table 5 – ClearPath Calculator Summary and Data Sources – Vehicle Fleet

On-Road Vehicle Fleet

Data Source

On-road vehicle fleet data was obtained for two sources:

- 1. General municipal fleet
- 2. Airport fleet

General municipal fleet fuel data could not be disaggregated by department (see Figure 9). The municipal fleet data and airport fleet data provided may double-count the Airport 1 Dodge Minivan fuel consumption, but this only represents 0.01% of total gasoline gallons consumed and would not change the GHG inventory results in a meaningful way. The municipal fleet data may also include some off-road vehicle/equipment fuel consumption that could not be disaggregated, but fuel consumption is estimated to be minor and/or negligible.

Sheriff helicopter fuel data was not collected or reported as it is considered negligible by County staff. In the future, fuel data can be obtained by contacting helicopter pilot Phil Heckmann.

To calculate emissions, ClearPath requires both the gallons of fuel consumed and vehicle miles traveled (VMT) by vehicle type (passenger, light truck, or heavy truck). For the municipal fleet data, total miles traveled and gallons of fuel consumed were provided for each vehicle class.

Figure 9 – Municipal Fleet Fuel Data

	TOTAL GALLONS CONSUMED	VEHICLE MILES TRAVELED	VEH. CLASS (0)	VEH. CLASS (1)	VEH. CLASS (2) & (3)	VEH. CLASS (5)	VEH. CLASS (6)	VEH. CLASS (7)	VEH. CLASS (8)	VEH. CLASS (9)	
VEHICLE TOTAL (830)			92	90	129	12	98	178	144	87]
(%) FUEL USED BY CLASS			6.0%	20.6%	22.8%	1.1%	8.2%	16.2%	16.6%	8.3%	
(%) MILES DRIVEN BY CLASS			11.1%	15.6%	24.8%	1.6%	9.5%	21.0%	14.8%	1.6%	
MILES DRIVEN		9,068,841	1,002,550	1,417,217	2,246,794	149,600	858,056	1,907,025	1,340,722	146,877	Miles
GASOLINE	886,105		55,492	190,437	211,320	10,561	76,232	149,782	151,746	40,535	Gal
DIESEL	38,739		0	0	0	0	0	0	2,095	36,644	Gal
		FLEET AVG. MPG	CLASS MPG	CLASS MPG	CLASS MPG	CLASS MPG	CLASS MPG	CLASS MPG	CLASS MPG	CLASS MPG	
	924,845	9.8	18.07	7.44	10.63	14.17	11.26	12.73	8.71	1.90	1

The County vehicle classes were matched to the ClearPath vehicle classes for use in the calculators (see Figure 10).

Figure 10 – Vehicle Class Categories

	ClearPath Vehicle Class
Oakland County Vehicle Class	(Passenger, Light Truck,
	Heavy Truck)
CLASS-0; CHEVY IMPALA/ MALIBU, FORD TAURUS, DODGE CHARGER,	Passenger
CLASS-1; CHEVY POLICE TAHOE	Passenger
CLASS-2 & 3; CHEVY POLICE IMPALA, DODGE POLICE CHARGER, FORD POLICE EXPLORER	Passenger
CLASS-5; CHEVY TAHOE, SUBURBAN, GMC YUKON	Passenger
CLASS-6; PICKUP TRUCK	Light truck
CLASS-7; SUV'S/ VAN'S; CHEVY EQUINOX, TRAVERSE, GMC TERRIAN, SAVANA VAN, DODGE CARAVAN,	
JEEP CHEROKEE	Light truck
CLASS-8; UTILITY TRUCK 2500/3500	Light truck
CLASS-9; DEPARTMENT OWNED VEHICLES, MEDUIM DUTY TRUCKS, MOTORCYCLES	Light truck

Gasoline vehicle classes (Class 0-9) were a mix of passenger and light trucks. All diesel vehicle classes (Class 8 and 9) were light trucks. For vehicle classes with both gas and diesel consumption (Class 8 and 9), total VMT for each fuel was calculated by multiplying the class MPG by the gallons of fuel (note that these MPGs represent a blended gas and diesel MPG).

For airport vehicle fleet fuel consumption data, scanned diesel and gasoline fuel logs were available. These logs included the gallons of fuel consumed per each vehicle identifier. These records contain a mix of on-road and off-road vehicles (see Figure 11).

Figure 11 – Airport Vehicle Fuel Log, Gasoline

GASOLINE RECORD

DATE	VEHICLE	GALLONS	MISC	INITIALO	+
-2	APT-3	225	milde	INITIALS	REMARKS
= 3	AP+-B	119		CITAN	
- 4	API-LI	70 0		<u> 19 10</u>	* • I ·
p- 1.9	APT-S	18 0		[//] [/] :	
1-14:	APT 3	10 . 0		· 1215	
16	KPT. 2	79.5		MAN	
129	APT: S'	213		And	
1-9.	APT R	210		VIC	
1-12	APT-2	21.5		11	3 G
-12	ANTE	27 -		DK	
1-15	A.DT. St	10 7		DAS	. t ^a
-16 .	104 3	A.C. Ma		CK	A
- 15g	107.13	100.3		PCS	
19	ADI	2711		- Aleren	
57	Astron	1		TIS	
-77	A-97 7	170 5	x	NTRS	
2 22	ADV - Cl	200		Parks	
23	101 7 :	Some 7.1		59,4021.	
. 23	ABTO	- O - O		MJC	
23 1	4.01.2	And.		LAND	
-70	ADT D	26.0		TH	
29	MPT 3	21.0		WE	
31	Ast S	<u> </u>		MAN	+
21	Nov M	- 0K 3 . / ·.		JH.	
~11	Lever a	30.0		ans.	
1.1	ACH 2	<u>61.9</u>		Die-	
91	AF 1. 7	21.0		Del.	
INING REA	DING:	59430	- 00		14
1.06	DATE	1.1			
80 0	ALLONS			DA	ATE: 2-ST-

FOR THE MONTH OF: JAN ZOIB

The vehicle identifier was used to determine the vehicle type and if the vehicle was on-road or off-road (see Figure 12). All the identified on-road gas and diesel vehicles (pickups, vans, utility trucks) are considered "light trucks" for the ClearPath calculator entry.

Figure 12 – Airport On-roa	d Vehicle Fleet
----------------------------	-----------------

OWNED BY AIRPORT	VEHCILE/EQUIPMENT (AS SHOWN ON LOG)	DESCRIPTION	UNLEADED	DIESEL	Onroad or Offroad	NOTES
	AIRPORT 1	MINI VAN	X			leased from Central Garage
X	AIRPORT 2	PICK-UP	X		Onroad	
X	AIRPORT 3	VAN	X		Onroad	
Х	AIRPORT 4	PICK-UP	X		Onroad	
X	AIRPORT 5	PICK-UP	X		Onroad	
Х	AIRPORT 6	UTILITY TRUCK		Х	Onroad	
X	AIRPORT 7	UTILITY TRUCK	X		Onroad	
X	AIRPORT 8	PICK-UP	X		Onroad	
X	AIRPORT 8	PICK-UP	X		Onroad	

Fuel consumption for these vehicles was transcribed from the logs and summed to generate total gallons of on-road gas and diesel fuels consumed. To determine the total VMT, the Class 8 blended gas and diesel MPG from the municipal fleet data was applied to the total gallons.

Emissions Factor

ClearPath provides annual vehicle fuel emission factor defaults under the "National Default Vehicle Fuel Efficiency & Emissions Factors" factor set. These defaults are obtained from the US Community Protocol, EIA, and EPA Emissions Factor Hub and are updated every year.

ClearPath Calculator

In ClearPath, a separate calculator needs to be created for each fuel type. Total gallons of gasoline and gasoline VMT were entered into the ClearPath calculator "Fleet Vehicle Emissions" (see Figure 13). VMT % vehicle types are determined by summing the VMT for each vehicle type for both the municipal fleet and aviation fleet data.

Figure 13 - ClearPath On-road Vehicle Fleet Calculator Data Inputs Screen - Gasoline

* Name		
Vehicle Fleet - Gasoline		
Factor Sets	Tags	
Transportation		
National Default Vehicle Fuel Efficiency & Emissio	ns Fa 🗸	
Grid Electricity	Information Only	
eGRID 2018 - RFCM Subregion	~	
Inputs		
	Value	Units
Were emissions calculated externally from ClearPath? ②	No V	
Does this record represent outsourced services? ③	Government Owned	
Fuel Type 💿	Gasoline 🗸	
Annual Fuel Use 😨	891677	Gallons
Percent Biofuel in Blend ②		∞
Annual Miles Traveled (VMT)	9028496	Miles
VMT Percent Passenger Vehicle (%) ③	54	∞
VMT Percent Light Truck (%) ③	46	[% ✓
Percent Heavy Truck (%) ②	0	% ~

%

~

Total gallons of diesel and diesel VMT are entered into a separate "Fleet Vehicle Emissions" ClearPath calculator (see Figure 14). Because all diesel on-road vehicles were light duty trucks, 100% can be entered in the VMT % Light Truck entry for Diesel Fuels.

Figure 14 – ClearPath On-road Vehicle Fleet Calculator Data Inputs Screen - Diesel

* Name		
Vehicle Fleet - Diesel		
Factor Sets	Tags	
Transportation National Default Vehicle Fuel Efficiency & Emissio Grid Electricity eGRID 2018 - RECM Subregion	ns Fa 🗸	
Inputs		
	Value	Units
Were emissions calculated externally from ClearPath? ②	No	
Does this record represent outsourced services? ③	Government Owned 🗸	
Fuel Type ②	Diesel 🗸	
Annual Fuel Use 💿	39163	Gallons
Percent Biofuel in Blend 😨		×
Annual Miles Traveled (VMT)	91570	Miles
VMT Percent Passenger Vehicle (%) 💿	0	<u>%</u>
VMT Percent Light Truck (%) 😨	100	<u>%</u>
Percent Heavy Truck (%) ③	0	×

Off-Road

Data Source

Off-road fuel consumption data is obtained from two sources:

- 1. Parks and Recreation
- 2. Airports

Fuel consumption data from wastewater treatment facility off-road equipment, such as forklifts, chainsaws, blowers, washers, pumps, and RTVs, is not recorded and therefore not included in the inventory.

To calculate emissions, ClearPath requires both the gallons of fuel consumed and the equipment type. Selection of Equipment Types for the ClearPath calculator is discussed in the "ClearPath Calculator" section below.

Parks and Recreation data includes quantity of each fuel type consumed. It is assumed that the fuel consumption is mainly for lawnmowers and ATVs. The fuel types were matched to the ClearPath fuel types (see Figure 15).

Parks and Rec Fuel Type	ClearPath Fuel Type
#2 Dyed Premium ULS Diesel	Diesel
#2 Ultra Low Sulfur Diesel	Diesel
#2 Dyed Ultra Low Sulfur Diese	Diesel
#2 ULS 5% Biodiesel	Bioiesel
87 Regular Gasoline E10	Gasoline

Figure 15 – Off-road Equipment Fuel Type Comparison

For airport vehicle fleet fuel consumption data, scanned diesel and gasoline fuel logs were available which included the gallons of fuel consumed per vehicle identifier. These records contain a mix of on-road and off-road vehicles.

Figure 16 – Airport Vehicle Fuel Log, Diesel

		DIESFI	RECORD		•
3	500 m				
5	, FOR I	HE MONTH OF:	JAN .	2018	
DATE	VEHICI B				
1-3	MC1274	GALLONS	MISC	INITIALS	REMARKS
1-2	JDAND	110.0	-	MSC.	
. 1-4.	· 0-140	0.7.		181.	
1.1-15	· Berlie	71.3		Jan .	
	- DSH D'	124.0		MSC	
115	- <u>Com s</u>	0.87		MSC .	- Ale C
1010	· Laster	Color		119	1998 1998
1/0	CONT 4	8 41.2		And .:	
Fil. 25	CSA S	30 0		WirB .	
	BLQUC -	<u> </u>	Negel States and the	MADAN	· · · · · · ·
170-	BLOWER	32.7	1.47 (4	NAL	
110	- la for	57.6.	1	ACA	
1 110.8.	Loader J.	40.			State of the second
1.1-1 d.		25		and C	
1/-/2	Stall	75	1	TreC.	1
In them	De Ha	: 19.8:	4 1 <u>1</u> 1	MARY	
1/15	OSH =	1959		724	
1-15	· OSH4	69.5		- and a	
1-16	OCH I	· 27	11. · ·	ChA .	
1 - 1 Ge	· 62514 -	1. 410:0	Sec. 22	TheD.	
1-16	· CC4 3	1900	<u></u>	Alea	
7-16:	· cryta 4	1275		MAN 5	
1-203	18413 8	200		A day word 1	<u> </u>
1/16	1 1	200 0000		4163	<u></u>
16.25	INSH Z	100. 2		AC. A.	·
12.20	· Averlin 1	120.	1 1 1	WWW.	
1.00		Man -		MINE	<u></u>
1700	1034-4	100,		DTR	
BEGINNING	READING	56:1.	00,30	ACL	
1-2-18	2. DATE	· · · · · ·	800	1 0 1.	
: 44.2.6	MEASUREMENT	ferra politi	j	- 88 m	ENDING READING
	_ GALLONS	105		MEASUREM	ENT: 27.58
1-30	·0.58.2	1.0, reason	÷. •	. ĢALL	ONS: 827
1 1 22 24	A. B. A. A. A.		·· ; › . ; ·	an an an an	Service Service

The vehicle identifier was used to determine the vehicle type and if the vehicle was on-road or off-road. Airport off-road vehicles/equipment include plow trucks, loaders, snowblowers, runway brooms, tractors, front-end loaders, and other equipment listed in Figure 17.

OWNED BY	VEHCILE/EQUIPMENT (AS SHOWN ON	DESCRIPTION	UNLEADED	DIESEL	Onroad or	NOTES
AIRPORT	LOG)				Offroad	
Х	DELTA	PLOW/SAND TRUCK		Х	Offroad	
Х	ECHO	HEAVY-DUTY PLOW TRUCK		Х	Offroad	
X	HI-LO	HI-LO		Х	Offroad	
Х	LOADER 1 & 2 (L-1, LDR)	FRONT END LOADER		Х	Offroad	
Х	ORANGE BLOWER	DRIVABLE SNOWBLOWER	X		Offroad	
Х	SNOWBLOWER (BLOWER)	DRIVABLE SNOWBLOWER		Х	Offroad	
Х	OSH 1	HEAVY-DUTY PLOW TRUCK		Х	Offroad	
Х	OSH 2	HEAVY-DUTY PLOW TRUCK		Х	Offroad	
Х	OSH 3 (BROOM)	RUNWAY BROOM		Х	Offroad	
Х	OSH 4 (BROOM)	RUNWAY BROOM		Х	Offroad	
Х	OSH 5	HEAVY-DUTY PLOW TRUCK		Х	Offroad	
Х	R-1	AIRPORT FIRE TRUCK		Х	Offroad	
Х	R-2	AIRPORT FIRE TRUCK		Х	Offroad	
Х	EXMARK 1 & 2 (X'S or X-1, X-2)	ZERO-TURN MOWER		Х	Offroad	
Х	HUSTLER 1 & 2 (HUSTLER)	ZERO-TURN MOWER	Х		Offroad	
Х	ZERO TURNS (HUSTLER/EXMARK)	ZERO-TURN MOWER	X		Offroad	
Х	FORD TRACTOR (FORD 260C)	HEAVY-DUTY TRACTOR (FOR MOWING)		Х	Offroad	
Х	JOHN DEERE (DEERE, JD4400, 6230)	HEAVY-DUTY TRACTOR (FOR MOWING)		Х	Offroad	
Х	NEW HOLLAND 5030	HEAVY-DUTY TRACTOR (FOR MOWING)		Х	Offroad	
Х	TRACTOR	HEAVY-DUTY TRACTOR (FOR MOWING)		Х	Offroad	
Х	YORK RAKE	TRACTOR		Х	Offroad	
Х	AIR COMPRESSOR	AIR COMPRESSOR		Х	Offroad	
Х	BANDIT	BRUSH HOG	X		Offroad	
Х	CHIPPER	WOOD CHIPPER	Х		Offroad	
X	PAINT MACHINE	RUNWAY PAINTING MACHINE	X		Offroad	
	STUMPER	STUMP GRINDER		Х	Offroad	Rented
Х	VERSA 4200	PRESSURE WASHER		Х	Offroad	
Х	GAS CAN (CAN, FUEL CAN, MIXED GAS)	CAN TO FUEL MOWERS & WEED	Х	Х	Offroad	
	LOANER	LOANER VEHICLE	X			Joaner from Central Garage

Figure 17 – Airport Off-road Vehicle Fleet

Fuel consumption for these vehicles was transcribed from the logs and summed to generate total gallons of off-road gas and diesel fuels consumed.

All off-road vehicles were assigned the equipment type "Large Utility" (see "ClearPath Calculator" section below for further explanation on equipment type).

Emissions Factor

ClearPath provides annual vehicle fuel emission factor defaults under the "National Default Vehicle Fuel Efficiency & Emissions Factors" factor set. These defaults are obtained from the US Community Protocol, EIA, and EPA Emissions Factor Hub and are updated every year.

ClearPath Calculator

In ClearPath, a separate calculator needs to be created for each fuel type.

Off-road diesel consumption was entered into the ClearPath calculator "Emissions from Off Road Vehicles" (see Figure 18). For Equipment Type, "Large Utility" should be selected, unless the equipment is definitively considered "Construction" or "Agricultural." If "Small Utility" or "Snowmobiles and Recreational" is selected, the methane and nitrous oxide emissions factors will calculate as zero.

Figure 18 – ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen - Diesel

* Name		
Off-road Vehicles - Diesel		
Factor Sets	Tags	
Transportation		
National Default Vehicle Fuel Efficiency & Emission	ons Fa 🗸	
	Information Only	
Inputs		
	Value	Units
Were emissions calculated externally from ClearPath? ⑦	No 💙	
Does this record represent outsourced services? ③	Government Owned	
Equipment Type 💿	Large Utility 🗸	
Fuel Type 💿	Diesel	
Fuel Used 😨	31144	Gallons 🗸

For Biodiesel, selecting the equipment type will not change emissions as the methane and nitrous oxide emissions factors are zero for each type. "Large Utility" was selected to mirror the diesel selection (see Figure 19).

Figure 19 – ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen – Biodiesel

* Name	
Off-road Vehicles - Biodiesel	
Factor Sets	Tags
Transportation National Default Vehicle Fuel Efficiency & Emissions Farv	

	Value	Units
Were emissions calculated externally from ClearPath? ②	No	
Does this record represent outsourced services? ③	Government Owned	
Equipment Type 💿	Large Utility	
Fuel Type 💿	Biodiesel 🗸	
Fuel Used 😨	451	Gallons
Percent Biofuel Blend ③	5	×

For gasoline, all the gasoline equipment types have the same emissions factors except for Agricultural, Locomotive, Ships and Boats, and Aircraft. "Large Utility" was selected to mirror the diesel selection (see Figure 20).

Figure 20 – ClearPath Off-road Vehicle Fleet Calculator Data Inputs Screen - Gasoline

* Name

Off-road Vehicles - Gasoline	
Factor Sets	Tags
Transportation	
National Deladit Vehicle Fuer Eniciency & Enissions Far +	

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? ?	No 🗸	
Does this record represent outsourced services? 😨	Government Owned	
Equipment Type 😨	Large Utility 🗸	
Fuel Type 😨	Gasoline 🗸	
Fuel Used ②	28292	Gallons

Solid Waste Facilities Calculations

Table 6 identifies the ClearPath calculators used on the Solid Waste Facilities tab, including the activity data analyzed, the calculator name, the inputs needed, and the source of inputs collected for the 2018 GHG inventory. Details on calculating each activity type are provided in subsequent sections.

Activity	ClearPath Calculator Name	Inputs	Source
Landfilled Waste	"Waste Generation"	 Quantity of waste (short tons) Landfill Methane Collection Scenario Landfill Moisture Content 	2020 campus operations diversion rate analysis
Composted Waste	"Composting Facilities"	 Quantity of waste (short tons) Waste Type (green or biowaste) 	

Table 6 – ClearPath Calculator Summary and Data Sources – Solid Waste Facilities

Data Source

Because of the lack of availability of 2018 solid waste data or more recent solid waste data, the 2020 campus operations diversion rate waste estimation was used as a proxy for 2018 waste. This analysis was conducted as part of the sustainability planning process that estimated 2020 campus and park waste quantities and destinations (see Figure 21). These estimates were developed based on information gathered from department interviews, dumpster sizes, and pick-up schedules. Notably, these waste values reflect pandemic-related operational impacts while the rest of the 2018 GHG inventory data does not. Additionally, the specific receiving landfills and composting sites for the campus and park waste are unknown, so default values were used in the GHG calculators.

Figure 21 – Sample of 2020 Park Waste Generation Analysis

				Oaklar	nd County Parl	s Waste Schedul	le							WASTE				RECYCLING				
Park	Qty	Size	Size, yd	Frequency	Times/Week	Days	Date Start	Date End	UOM	Months	% Fuliness	GFL		Annual Waste Yardage	->	Total Weight, LBs]	Annual Yardage		Total Weight, LBs	Estim. Costs	ted Annual (Waste + Paper)
ADDISON OAKS - RECYCLE	1	6 yd	6	On call	0.5		year	around	EA	12	95%	\$50.00		RECYCLE cubic yards		RECYCLE Lbs		144 cubic yards		28,800 Lbs	\$	1,200
ADDISON CAKS	1	6 yd	6	2x per week	2	Tue, Fri	Year	around	MO	12	95%	\$117.00] [592 cubic yards		81,743 Lbs	1	cubic yards	1	- Lbs	\$	1,495
ADDISON OAKS	2	8 yd	8	2x per week	2	Mon, Fri	1-May	31-Oc	t MO	5	95%	\$299.00		658 cubic yards		90,826 Lbs		cubic yards		- Lbs	\$	780
ADDISON OAKS	1	8 yd	8	2x per week	2	Mon, Fri	1-May	31-Oc	MO	5	95%	\$156.00		329 cubic yards		45,413 Lbs		cubic yards		- Lbs	\$	1,495
ADDISON OAKS	2	8 yd	8	2x per week	2	Mon, Fri	1-May	31-Oc	t MO	5	95%	\$299.00		658 cubic yards		90,826 Lbs		cubic yards		- Lbs	\$	2,175
ADDISON OAKS - ASH	1	20yd	20	On call	0.2		1-May	31-Oc	EA	5	95%	\$235.00 Haul/\$30.00 Ton		95 cubic yards		13,110 Lbs		cubic yards		- Lbs	\$	5,220
CATALPA CAKS	1	4 yd	4	1x per week	1		1-Apr	30-Nov	MO	7	95%	\$55.00		115 cubic yards		15,895 Lbs		cubic yards		- Lbs	\$	165
CATALPA CAKS	1	4 yd	4	1× per week	1		1-Dec	30-Ma	123	3	95%	\$55.00		49 cubic yards		6,812 Lbs		cubic yards		- Ubs	\$	1,180
GLEN OAKS	1	6 yd	6	1x per week	1		1-Mar	30-Nov	MO	20	95%	\$59.00		494 cubic yards		68,120 Lbs		cubic yards		- Lbs	\$	110
GLEN OAKS	1	6 yd	6	On call	0.5		1-Dec	28-Fet	EA	2	95%	\$55.00		23 cubic yards		3,146 Lbs		cubic yards		- Lbs	\$	1,320
GROVELAND OAKS	2	8 yd	8	2x per week	2	Mon, Fri	1-May	31-Oc	# MO	5	95%	\$299.00		658 cubic yards		90,826 Lbs		cubic yards		- Lbs	\$	1,196
GROVELAND OAKS	2	8 yd	8	2x per week	2	Mon, Fri	1-May	30-Seg	MO	4	95%	\$299.00		527 cubic yards		72,661 Lbs		cubic yards		- Lbs	\$	330
GROVELAND OAKS	2	8 yd	8	On call	0.5		1-0d	30-Ap	r EA	6	95%	\$55.00		182 cubic yards		25,171 Lbs		cubic yards		- Lbs	\$	1,320
GROVELAND OAKS	- 4	6 yd	6	2x per week	2	Mon, Fri	1-May	31-Oc	# MO	5	95%	\$468.00		987 cubic yards		136,239 Lbs		cubic yards		- Lbs	\$	2,808
INDEPENDENCE OAKS	- 4	6 yd	6	2x per week	2	Mon, Thurs	1-May	30-Nov	MO	6	95%	\$468.00	11	1185 cubic yards		163,487 Lbs		cubic yards		- Lbs	\$	220
INDEPENDENCE OAKS	- 4	6 yd	6	On call	0.5		1-Dec	30-Ap	EA	4	95%	\$55.00	11	182 cubic yards		25,171 Lbs		cubic yards		- Lbs	\$	1,320
LYON OAKS	1	8 yd	8	1x per week	1	Mon	Year	around	MO	12	95%	\$78.00	11	395 cubic yards		54,496 Lbs		cubic yards		- Lbs	\$	1,872
LYON OAKS	1	8 yd	8	2x per week	2		Year	around	MO	12	95%	\$156.00	11	790 cubic yards		108,991 Lbs		cubic yards		- Lbs	\$	660
LYON OAKS	1	6 yd	6	On call	0.5		Year	around	EA	12	95%	\$55.00	11	137 cubic yards		18,878 Lbs		cubic yards		- Lbs	\$	1,320
MARKET	1	6 yd	6	2x per week	2	Mon, Fri	1-May	31-Oc	t MO	5	95%	\$117.00	11	247 cubic yards		34,060 Lbs		cubic yards		- Lbs	\$	295
MARKET	1	6 yd	6	1x per week	1		1-May	31-Oc	t MO	5	95%	\$59.00	11	123 cubic yards		17,030 Lbs		cubic yards		- Lbs	\$	354
ORION OAKS	1	6 yd	6	1x per week	1	Mon	1-May	30-Nov	MO	6	95%	\$59.00	1	148 cubic yards		20,436 Lbs		cubic yards		- Lbs	\$	220

Total landfilled waste from campus and parks and composted waste from parks was converted to short tons and summed to be entered in ClearPath calculators.

Emissions Factor

Solid waste emissions are determined by an area's waste characterization. The 2016 Michigan waste characterization from the "Economic Impact Potential and Characterization of Municipal Solid Waste in Michigan 2016" report Table 2-1⁵ was used for the ClearPath "Waste Characterization" Factor Set (see Table 7 and Figure 22). The factor set percentages do not add up to 100% as the table excludes non-organic material like plastics. This factor set can be updated for future inventories as more accurate local data or more recent reports become available.

		Include in		
Waste Type	%	ClearPath?	ClearPath %	ClearPath Waste Type
Mixed paper	12.1%	Х	12.1%	Magazines/third class mail
Newsprint	1.2%	Х	1.2%	Newspaper
Corrugated carboard	8.4%	Х	8.4%	Corrugated carboard
Plastic	14.0%	-	-	-
Metals	3.8%	-	-	-
Glass	2.2%	-	-	-
Textiles/bulk/other inorganics	19.5%	-	-	-
Food	13.6%	Х	13.6%	Food scraps
Yard	5.0%	Х	5.0%	Grass, leaves
Soil	2.4%	Х	2.4%	
Wood	5.2%	Х	5.2%	Dimensional Lumber
Other Organics	9.1%	Х	9.1%	Grass
MI Deposits	0.3%	-	-	-
Household Hazardous	0.9%	-	-	-
Electronics	2.5%	-	-	-
	100%		57%	

Table 7 – Michigan State-wide Aggregate Composition (mean % by weight)

⁵ https://www.michigan.gov/documents/deg/480236-14 WMSBF waste characterization report 521920 7.PDF

2016 Michigan Waste Characterization	
Year	2018 🗸
Percentage Mixed MSW	0
Percentage Newspaper	1.2
Percentage Office Paper	0
Percentage Corrugated Cardboard	8.4
Percentage Magazines / Third Class Mail	12.1
Percentage Food Scraps	13.6
Percentage Grass	11.6
Percentage Leaves	2.5
Percentage Branches	0
Percentage Dimensional Lumber	5.2
Notes	
Based on "Economic impact potential and cha municipal solid waste in Michigan 2016" Table	2-1. The factor

Figure 22 – ClearPath Waste Characterization Factor Set Input

ClearPath Calculator

Total landfilled waste can be summed and entered in the "Waste Generation" calculator. Landfilled park waste and landfilled campus waste were reported in two separate calculators to better demonstrate the difference between their emissions, but can be summed in one calculator if desired (see Figure 23 and Figure 24). Total composted park waste was summed and included in the "Composting Facilities" calculator (see Figure 25). For all Solid Waste calculators, the answer for the question "Is the receiving landfill owned/operated by your local government?" should be marked as "No."

Because the receiving landfills are unknown, the Landfill Methane Collection Scenario was marked as "Typical" in the ClearPath calculators. Landfill Moisture Content was marked as "Moderate" (20-40 inches/year) as this represents typical precipitation for Oakland County.⁶ The Waste Type to Calculate Emissions For should be marked as "All." Park composted waste type is entered as "Green Waste."

⁶ https://usafacts.org/issues/climate/state/michigan/county/oakland-county

Figure 23 – ClearPath Solid Waste Calculator Data Inputs Screen – Campus Waste to Landfill

* Name		
Campus Solid Waste - Landfill		
Factor Sets Tags Waste Characterization	formation Only	
Inputs		
	Value	Units
Calculation Inputs		
Use this section to enter the quantity of solid waste and related data		
Were emissions calculated externally from ClearPath? 😨	No	
Total Waste Generated 😨	5014	Tons 🗸
Landfill Methane Collection Scenario 😨	Typical 🗸	
Landfill Moisture Content ③	Moderate 🗸	
Waste Type to Calculate Emissions For	All	
Is the receiving landfill owned/operated by your local government? $\textcircled{2}$	No	
Number of Government Employees ②		Employees 🗸

Figure 24 – ClearPath Solid Waste Calculator Data Inputs Screen – Park Waste to Landfill

* Name		
Park Waste - Landfill		
Factor Sets		
2016 Michigan Waste Characterization		
	formation Only	
Inputs		
	Value	Units
Calculation Inputs		
Use this section to enter the quantity of solid waste and related data		
Were emissions calculated externally from ClearPath? 💿	No	
Total Waste Generated ②	1129	Tons 🗸
Landfill Methane Collection Scenario 😨	Typical 🗸	
Landfill Moisture Content ③	Moderate 🗸	
Waste Type to Calculate Emissions For	All	
Is the receiving landfill owned/operated by your local government? $\textcircled{2}$	No	
Number of Government Employees ②		Employees 🗸

Figure 25 – ClearPath Solid Waste Calculator Data Inputs Screen – Park Waste to Compost

* Name

Park Waste - Compost	
	Tags
	Information Only

	Value	Units
Calculation Inputs		
Use this section to enter the quantity of solid waste and related data		
Were emissions calculated externally from ClearPath? $\textcircled{2}$	No 🗸	
Quantity of Waste Composted	48.6	Tons 🗸
Waste Type 💿	Green Waste	
Is this facility owned/operated by your local government? $\textcircled{2}$	No	

Wastewater Treatment Facilities Calculations

Table 8 identifies the ClearPath calculators used on the Wastewater Treatment Facilities tab, including the activity data analyzed, the calculator name, the inputs needed, and the source of inputs collected for the 2018 GHG inventory. Details on calculating each activity type are provided in subsequent sections.

Activity Conventional Wastewater Treatment	ClearPath Calculator Name • "Process N ₂ O Emissions from Wastewater Treatment" • "Emissions from Combustion of Digostor Goo"	 ClearPath Inputs Population Nitrification/denitrificati on (Y/N) Industrial/Commercial Discharge Multiplier (1 or 1.25) 	Source Gary Nigro nigrog@oakgov.com, Water Resources Commissioner's Office
Conventional Wastewater Effluent	"Process N ₂ O from Effluent Discharge to Rivers and Estuaries"	 Population Nitrification/denitrificati on (Y/N) Industrial/Commercial Discharge Multiplier (1 or 1.25) Aerobic or Anaerobic 	
Septic Systems	"Fugitive Emissions from Septic Systems"	Population	

Table 8 – ClearPath Calculator Summary and Data Sources –Wastewater Treatment Facilities

Data Source

The information on each County-operated wastewater treatment facility was provided by Gary Nigro, Chief Engineer of the Water Resources Commissioner's office. Any energy consumed to operate the wastewater facilities is accounted for under the Buildings & Facilities sector. The process and effluent emissions accounted for in the inventory are from the facilities/systems listed in Table 9.

Table 9 – Facilities with Process/Effluent Emissions Included in the GHG Inventory

Conventional Wastewater Treatment Facilities	Septic Systems
 Lower Pettibone Walled Lake-Novi East Boulevard Auburn Commerce Twp. 	 Lyon Oaks Woodbridge Belle Ann Falls Groveland Park Springfield Oaks Park

The Addison Oak Park Lagoon system process/effluent emissions were not entered into ClearPath as the ClearPath lagoon calculator is not meant for aerated or mixed lagoons. Additionally, the Addison Oak Park lagoon emissions would most likely be negligible (<1% total wastewater emissions) and were therefore excluded from the inventory.

The LGOP notes: "While IPCC, EPA and others have worked to estimate GHG emissions from wastewater on a gross basis, there are not widely-accepted, standardized guidelines to estimate

emissions from wastewater treatment at a facility level". Therefore, wastewater GHG emission calculations represent general estimations of emissions. ClearPath provides multiple wastewater emissions equations that account for various methods of wastewater treatment. Information on each County-operated wastewater treatment plant was gathered to determine which ClearPath equation to use and how to calculate emissions (see Table 10 and Table 11).

	Lower Pettibone Lake WWTF	Walled Lake-Novi WWTF	East Boulevard WWTF	Auburn WWTF	Commerce Twp. WWTP
Treatment Type	Conventional	Conventional	Conventional	Conventional	Conventional
Population served*	112	19,000	61,000	125,000	16,000
Is there nitrification/denitrification?	Yes	Yes	Yes	Yes	Yes
Is the facility predominately an aerobic or anaerobic system?	Aerobic	Aerobic	Aerobic	Anaerobic	Aerobic
If digester gas is produced, is it combusted or flared?	N/A	N/A	N/A	Yes	N/A
Is there industrial or commercial wastewater that is received by the facility?	No	Yes	Yes	Yes	Yes

Table 10 – Conventional Wastewater Treatment Facility Information

*Lower Pettibone's population was estimated using the given information of 28 homes (assumed 4 people/home)

Table 11 – Septic System Facility Information

	Lyon Oaks Septic Field	Woodbridge Septic Field	Belle Ann Falls Community Septic*	Groveland Oaks Park Septic Sys.	Springfield Oaks Park Septic Sys.
Treatment Type	Septic	Septic	Septic	Septic	Septic
Population served**	200	68	24	343	744
Is there nitrification/ denitrification?	No	No	No	N/A	N/A
Is the daily biochemical oxygen demand (BOD5) load of the system in kg BOD5/day available?	No	No	No	No	No

* Belle Ann Falls was operated by the County until 2021, so it should not be included in County inventories past that date.

**Septic System service populations were estimated using given information on number of homes served (assumed 4 people/home), contacting Parks and Rec Manager Melissa Prowse for Park visitor information, and contacting Lyon Oaks golf course for average # of customers/day

If detailed wastewater treatment data cannot be obtained, ClearPath equations use service population as a proxy for wastewater activity data. Methods of summing service population and entering data into the calculators is discussed in the "ClearPath Calculators" section below. It should be noted that if wastewater treatment processes change in the future, the relevant ClearPath calculators may also change.

Emissions Factor

ClearPath uses a default emissions factor for wastewater that cannot be edited.

ClearPath Calculators

To decrease the amount of data entry needed, wastewater inputs and calculators were grouped by treatment type instead of wastewater facility. Table 12 maps the ClearPath calculators to wastewater facilities.

		ClearPath	Calculator			
Wastewater Facility	Process N ₂ O Emissions from Wastewater Treatment	Process N ₂ O from Effluent Discharge to Rivers and Estuaries	Emissions from Combustion of Digester Gas	Fugitive Emissions from Septic Systems		
Lower Pettibone Lake WWTF	Х	Х				
Walled Lake-Novi WWTF	Х	Х				
East Boulevard WWTF	Х	Х				
Auburn WWTF	Х	X*	Х			
Commerce Twp. WWTP	Х	Х				
Lyon Oaks Septic Field				Х		
Woodbridge Septic Field				Х		
Belle Ann Falls Community Septic				X		
Groveland Oaks Park Septic Sys.				X		
Springfield Oaks Park Septic Sys.				X		
*A separate "Process N_2O from Effluent Discharge to Rivers and Estuaries" calculator is needed to calculate Auburn's effluent emissions as it is an anaerobic system while the other conventional systems are aerobic						

Table 12 – ClearPath Calculators and Wastewater Facility Mapping

The final list of ClearPath calculators appears as shown in Figure 26.

Figure 26 – ClearPath Wastewater Treatment Calculators Uses in 2018 GHG Inventory

Inventory Records For Water & Wastewater Treatment Facilities

Conventional WWTP Process Emissions	Edit Delete
Conventional Aerobic WWTP Effluent Discharge	Edit Delete
Conventional Anaerobic WWTP Effluent Discharge	Edit Delete
Conventional Anaerobic WWTP Digester Gas Combustion	Edit Delete
Septic Systems	Edit Delete

For the "Process N₂O emissions from Wastewater Treatment Calculator" (named "Conventional WWTP Process Emissions" in Figure 26), total service populations for all conventional wastewater treatment plants were summed and entered. All conventional plants had nitrification/dentification and industrial

and/or commercial discharge (except for Lower Pettibone). Since there is industrial/commercial discharge, the "Industrial Commercial Discharge Multiplier" was entered as 1.25 (see Figure 27).

Figure 27 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional WWTP Process Emissions

* Name Conventional WWTP Process Emissions Factor Sets Grid Electricity eGRID 2018 - RFCM Subregion ✓

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? ②	No	
Nitrification/Denitrification as a step in the treatment process?	Yes 🗸	
Population Served	221112	People V
Industrial Commercial Discharge Multiplier 😨	1.25	Unitless V
Is this facility owned/operated by your local government? ③	Yes 🗸	

Two separate "Process N₂O from Effluent Discharge to Rivers and Estuaries" calculators must be created to account for the two different effluent treatment methods represented by the conventional treatment systems (the calculators were named "Conventional Aerobic WWTP Effluent Discharge" and "Conventional Anaerobic WWTP Effluent Discharge" in ClearPath). Lower Pettibone, Walled Lake-Novi, East Boulevard, and Commerce Township all use aerobic treatment (see Figure 28) while Auburn uses anaerobic. The service populations for Lower Pettibone, Walled Lake-Novi, East Boulevard, and Commerce Township were summed and entered in one calculator with the entry for "Is your facility predominately an Aerobic or Anaerobic system" set as "Aerobic." The industrial-commercial discharge multiplier should be entered as 1.25 and nitrification/denitrification should be marked as "Yes."

Figure 28 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional Aerobic WWTP Effluent

* Name

Conventional Aerobic WWTP Effluent Discharge

Tags			

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? (\circ)	No	
Do You have daily N load data from your effluent discharge? 😨	No	
Population Served ②	96112	People V
Industrial-Commercial Discharge Multiplier ③	1.25	Unitless ¥
Is your facility predominantly an Aerobic or Anaerobic system? ③	Aerobic	
Does your facility employ Nitrification/Denitrification? ③	Yes 🗸	
Is this facility owned/operated by your local government? ②	Yes 🗸	

In a separate "Process N₂O from Effluent Discharge to Rivers and Estuaries" calculator (see Figure 29), the service population for Auburn was entered and the entry for "Is your facility predominately an Aerobic or Anaerobic system" set as "Anaerobic." The industrial-commercial discharge multiplier should be entered as 1.25 and nitrification/denitrification should be marked as "Yes."

Figure 29 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Conventional Anaerobic WWTP Effluent

* Name

Conventional Anaerobic WWTP Effluent Discharge

ags		

Т

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? $\textcircled{2}$	No	
Do You have daily N load data from your effluent discharge? ②	No	
Population Served 😨	125000	People 🗸
Industrial-Commercial Discharge Multiplier 💿	1.25	Unitless 🗸
Is your facility predominantly an Aerobic or Anaerobic system? 💿	Anaerobic 🗸	
Does your facility employ Nitrification/Denitrification? 💿	Yes 🗸	
Is this facility owned/operated by your local government? ③	Yes 🗸	

Because the Auburn facility also produces digester gas, the "Emissions from Combustion of Digester Gas" calculator must be used to calculate digester gas emissions (see Figure 30). The gas is used to run boilers and an engine and is also flared. Only population is needed to calculate these emissions.

Figure 30 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Digester Gas Combustion

* Name

|--|

Tags

Information Only

Inputs

	Value	Units
Calculation Type ③	Population Based V	
Do you have data on Gas Composition or Heat Content? 💿	· · · ·	
Gas Production 😨		scf / day 🗸
Gas Composition ②		Percent CH4 🗸
Heat Content 💿		Btu / scf 🗸 🗸
Population Served ②	125000	People V
Is this facility owned/operated by your local government? ②	Yes 🗸	

NOTE: ClearPath notes that the "Emissions from Combustion of Digester Gas" calculator should be used and **not** the "Emissions from the Incomplete Combustion of Digester Gas" calculator or "Emissions from Flaring of Digester Gas" calculator. It also notes that although some facilities do not burn all the gas in a boiler, but flare some portion of it, there is currently no approved methods that distinguish between fuel burning devices.

For the "Fugitive Emissions from Septic Systems" calculator (see Figure 31), the septic system service populations should be summed and entered.

Figure 31 – ClearPath Wastewater Treatment Calculator Data Inputs Screen – Septic Systems

* Name		
Septic Systems		
Factor Sets	Tags	
Grid Electricity	v	

Information Only

	Value	Units
Were emissions calculated externally from ClearPath? ③	No	
Calculation Type ③	Population Based 🗸	
BOD5 Load ③		kg BOD5/day 🗸
Population Served ②	1379	People V

Process & Fugitive Emissions Calculations

Table 13 identifies the ClearPath calculators used on the Process & Fugitive Emissions tab, including the activity data analyzed, the calculator name, the inputs needed, and the source of inputs collected for the 2018 GHG inventory. Calculation details are provided in subsequent sections.

Table 40 Olass Dath	O al avulata y Ourseaux	and Data Courses	Deserve 0 Eventitive Environment
Table 13 – ClearPath	Calculator Summary	/ and Data Sources –	· Process & Fugitive Emissions

Activity	ClearPath Calculator Name	ClearPath Inputs	Source of Inputs
Natural Gas Fugitive Emissions	"Fugitive Emissions from Natural Gas Distribution"	 Fuel Type (Natural Gas) Fuel Use (therms) 	 Central Heating Plant and Separate Municipal Accounts: Joseph Murphy <murphyj@oakgov.com></murphyj@oakgov.com> Wastewater Treatment Facilities: Gary Nigro <nigrog@oakgov.com></nigrog@oakgov.com> Airports: Michelle Stover <stoverm@oakgov.com></stoverm@oakgov.com>

Data Source

Fugitive emissions calculations are derived from total natural gas consumption data as outlined in the "Buildings & Facilities - Natural Gas" section above.

Emissions Factor

ClearPath uses a default emissions factor for natural gas fugitive emissions that cannot be edited.

ClearPath Calculator

Total therm consumption should be summed and entered in the ClearPath calculator "Fugitive Emissions from Natural Gas Distribution" (see Figure 32). The ClearPath defaults for all other inputs should be used in the calculator. The ClearPath default natural gas leakage rate is from the Environmental Defense Fund (EDF) User Guide for Natural Gas Leakage Rate Modeling Tool.

Figure 32 – ClearPath Fugitive Emissions Calculator Data Inputs Screen

* N	a	m	e
-----	---	---	---

Fugitive Emissions from Natural Gas Distribution	
	Tags

Information Only

	Value	Units	
Calculation Inputs			
Use the fields in this section to enter data on methane leakage from the local distribution system.			
Were emissions calculated externally from ClearPath? ③	No		
Quantity of Natural Gas Used 💿	2460769	Therms 🗸	
Leakage Rate 😨	0.3	% 🗸	
Nature Gas Energy Density	1028	btu/scf 🗸	
Natural Gas Density	0.8	kg/m^3 ►	
Natural Gas % CH4	93.4	% 🗸	
Natrual Gas % CO2	1	% ~	